14
February
2022
Engineering

How 40 Lines of Code Improved Our React App’s Performance by 70%

On Appsmith, developers can quickly build any custom business software with pre-built UI widgets that connect to any data source. These widgets can be controlled with JavaScript. We created this framework to help developers save on valuable time building complex applications for internal uses within their organizations. For this to work for everyone, we believe that the core parts of Appsmith need to run smoothly and should be continuously improved.  Appsmith’s UI is built using React, Redux, Web Workers, Immer among other things. 


In this blog, Sathish Gandham, a frontend engineer focusing on UI performance at Appsmith, will talk about how we improved the editing experience on Appsmith.

What is the Editing Experience on Appsmith? 

The editing experience on Appsmith involves writing bits of code to customize the functionality of the widgets and writing special commands and actions into the application. It is a crucial function in the Appsmith framework. 

Lag and Delay 

Building an application on Appsmith involves dragging and dropping widgets onto the canvas and writing custom code on the editor; however, we noticed that while editing text/code in the canvas, the editor would often freeze, resulting in a less than optimal user experience. When building an application, there should be no delay or lag. This was a huge issue that needed our immediate attention from an engineering perspective. For a natural typing experience, users want the keypress latency to be under 100ms, though 50ms would be ideal. 

To solve this problem, we needed to understand what happens when a user types. For this, we used: 

React profiler: This measures how often components in the application render and the “cost” of rendering. The profiler helps in identifying parts of an application that are slow. In our case, this allowed us to understand what components were rendered as we typed. 

Chrome Performance tools: This helped us quantify the problem, measure our progress, find the code taking longer to execute, and find unnecessary repaints. 

Please note that the React profiler is part of the React Developer tools browser add-on which is available for Chrome and Firefox.

From the React profiler, we see three pairs of long commits; each of these corresponds to the following property pane, and UI widget renders. Ideally, the property pane should render much faster than the canvas since there is nothing changing in the property pane except the input we are editing. Even the canvas should be rendering the widgets currently in use and not the rest. We realized that this was not the case and needed to be fixed. 

We profiled the property pane issue in isolation to identify what it takes to render it. For this, we used the performance tab in Chrome DevTools to see what happens when the property pane opens. This gives us some helpful information. 

  • ComponentDidMount of code editor is taking a lot of time 
  • Styles are also taking a long time to render
If you see the property pane commit in the screenshot above, you will notice that evaluatedValuePopup also takes significant time.


Here’s how we listed the tasks that lay ahead of us: 

  1. Identify as to why all the widgets were rendering when they don’t have to and fix it
  2. Optimize the code editor [Not apparent from the React profiles]
  3. Identify why all the controls in the property pane are rendering and fix it
  4. Optimize the global styles
  5. Optimize the evaluatedvalue pop-up

In this blog, I will talk about how we went about the first task. Before I get to that, here are a few tips for profiling: 

  • Try to split your problem into smaller pieces and profile them. With this, you won’t crowd your profile, and you can find the performance issues with ease. 

Example 1: To improve the editing experience, we just profiled a single keypress. 

Example 2: To profile a drag and drop action, we can split that into drag start, move, and drop.

  • Leave the application idle for 5 seconds after starting the profile and before stopping it. It will make it very easy to identify the work that has been done. [See A & C From profile above]
  • To measure the overall performance improvements, instead of measuring each optimization individually, it’s better to consider focussing on the overall scripting and time taken to render during an action. You can get this number from the chrome performance tab. [B & D from profile above]
  • In the React profiler, don’t just focus on the large commits. Go through each commit at least once, and see what’s getting rendered in that commit. The chances are that one or two small components are accounting for all those renders.

Here’s a short guide on reading the React profile: 

  • A: List of commits during our profile
  • B: The commit we are looking at
  • C: Details about the selected component (WidgetsEditor). Our widgets editor rendered three times during the profile at 6.1s, 8.6s, and 14.1s. 102ms, 328ms,83.1ms is the duration each commit took; it is not the total time the selected component took to render.
  • D: Zoomed in view on the component we selected and its children.

Here are the notes on the profile based on which we worked on improving the editing experience. You can download the attached profile and import it in your React profiler to follow along or just refer to the image above.

Please note that the React profiler is available only when you open a react app in dev mode in Chrome/Firefox, if you don’t have a local React development set up, you can use the standalone React developer tools to read the profile. 

Here are instructions on how to install it and start it: 

Install

# Yarn

yarn global add react-devtools

# NPM

npm install -g react-devtools

Run

react-devtools

Follow this link to read the detailed notes from the profile we did to improve the editing experience on Appsmith. 

I’ve put some notes here for your reference: 

1. Evaluated value opening. Not related to editing.

2. Widgets editor, not sure why.

3. Editor focused. We should be able to avoid the rest of the property pane from rendering.

4. Small changes to property pane, its header, lightning menu, and action creator. Nothing changes for them, so they should not be re-rendering. Memoization can help here.

5. Same as above. 

6. We get the evaluated value back. Entire widgets editor is re-rendered (Deduced this from one of the two updates to table), we can optimise this

- If each widget subscribes to its data independently, we should be able to avoid the unnecessary renders of the widgets by

- Doing a deep check at the widget level

- update the store with only values that changed. 

7. PropertyPane is rendered with the updated value. EvaluatedValue taking most of the time.

8. From 8 to 17, these are commits like 4 & 5 above. 

9. 18 & 19 are widgets editor and property pane. I don’t see why these are required. I will look into it. 



Widgets Render When Not Needed


One of the most loved features of Appsmith is reactive updates. With reactive updates, you can see the widget change and show data. With traditional programming, you would have to reload the page in order to see the update in the widget. This is achieved by updating the data tree as and when you change something on the canvas and using the updated data tree to re-render the app. Due to the amount of data we have and the number of calculations we need to do, it took a long time and blocked the main thread.

To solve this problem, we moved the evaluations to a web worker freeing the main thread. A brilliant move to solve the problem at hand, but this created a new issue. The problem here was due to object reference changing. Since the data tree is coming from the worker, we would always get a new reference for every item in the tree even though only some of them changed. This reference change was making all the widgets re-render unnecessarily.


A few approaches we tried to solve this problem were:

  1. Get what keys changed from the worker (worker has this information) and update only those values in the reducer. This did not work because the list of keys was not complete. 
  2. Compute the diffs between the current data tree and the one received from the worker and update only what changed. Though this prevented the renders, we did not improve the overall scripting time we measured earlier. The reason is, computing the diffs itself took a lot of time, which would happen twice for each change.


Web Worker to the Rescue 


We moved the task of computing the diffs to the worker and used the deep-diff library to compute the diffs and let immer take care of immutability.

This helped us in two ways:

  1. Offloaded the expensive task of computing the diffs on the main thread.
  2. Reduced the size of the data we transfer between worker and the main thread (this was never a bottleneck for us, though).


This change alone brought down the keypress latency by half.


Instead of replacing the entire data tree from the worker, we get the only changes (updates) and apply them to the current state. applyChanges is a utility method from deep-diff. Immer takes care of the immutability.


If there’s anything to be said about performance improvement, it’s this, don’t take performance for granted and profile your code on a regular basis. Even a few lines of change or configuration can lead to a great performance gain. 



I hope you found this blog helpful. If you’d like to get in touch with Satish, ping him on Discord or visit his website.

How 40 Lines of Code Improved Our React App’s Performance by 70%

On Appsmith, developers can quickly build any custom business software with pre-built UI widgets that connect to any data source. These widgets can be controlled with JavaScript. We created this framework to help developers save on valuable time building complex applications for internal uses within their organizations. For this to work for everyone, we believe that the core parts of Appsmith need to run smoothly and should be continuously improved.  Appsmith’s UI is built using React, Redux, Web Workers, Immer among other things. 


In this blog, Sathish Gandham, a frontend engineer focusing on UI performance at Appsmith, will talk about how we improved the editing experience on Appsmith.

What is the Editing Experience on Appsmith? 

The editing experience on Appsmith involves writing bits of code to customize the functionality of the widgets and writing special commands and actions into the application. It is a crucial function in the Appsmith framework. 

Lag and Delay 

Building an application on Appsmith involves dragging and dropping widgets onto the canvas and writing custom code on the editor; however, we noticed that while editing text/code in the canvas, the editor would often freeze, resulting in a less than optimal user experience. When building an application, there should be no delay or lag. This was a huge issue that needed our immediate attention from an engineering perspective. For a natural typing experience, users want the keypress latency to be under 100ms, though 50ms would be ideal. 

To solve this problem, we needed to understand what happens when a user types. For this, we used: 

React profiler: This measures how often components in the application render and the “cost” of rendering. The profiler helps in identifying parts of an application that are slow. In our case, this allowed us to understand what components were rendered as we typed. 

Chrome Performance tools: This helped us quantify the problem, measure our progress, find the code taking longer to execute, and find unnecessary repaints. 

Please note that the React profiler is part of the React Developer tools browser add-on which is available for Chrome and Firefox.

From the React profiler, we see three pairs of long commits; each of these corresponds to the following property pane, and UI widget renders. Ideally, the property pane should render much faster than the canvas since there is nothing changing in the property pane except the input we are editing. Even the canvas should be rendering the widgets currently in use and not the rest. We realized that this was not the case and needed to be fixed. 

We profiled the property pane issue in isolation to identify what it takes to render it. For this, we used the performance tab in Chrome DevTools to see what happens when the property pane opens. This gives us some helpful information. 

  • ComponentDidMount of code editor is taking a lot of time 
  • Styles are also taking a long time to render
If you see the property pane commit in the screenshot above, you will notice that evaluatedValuePopup also takes significant time.


Here’s how we listed the tasks that lay ahead of us: 

  1. Identify as to why all the widgets were rendering when they don’t have to and fix it
  2. Optimize the code editor [Not apparent from the React profiles]
  3. Identify why all the controls in the property pane are rendering and fix it
  4. Optimize the global styles
  5. Optimize the evaluatedvalue pop-up

In this blog, I will talk about how we went about the first task. Before I get to that, here are a few tips for profiling: 

  • Try to split your problem into smaller pieces and profile them. With this, you won’t crowd your profile, and you can find the performance issues with ease. 

Example 1: To improve the editing experience, we just profiled a single keypress. 

Example 2: To profile a drag and drop action, we can split that into drag start, move, and drop.

  • Leave the application idle for 5 seconds after starting the profile and before stopping it. It will make it very easy to identify the work that has been done. [See A & C From profile above]
  • To measure the overall performance improvements, instead of measuring each optimization individually, it’s better to consider focussing on the overall scripting and time taken to render during an action. You can get this number from the chrome performance tab. [B & D from profile above]
  • In the React profiler, don’t just focus on the large commits. Go through each commit at least once, and see what’s getting rendered in that commit. The chances are that one or two small components are accounting for all those renders.

Here’s a short guide on reading the React profile: 

  • A: List of commits during our profile
  • B: The commit we are looking at
  • C: Details about the selected component (WidgetsEditor). Our widgets editor rendered three times during the profile at 6.1s, 8.6s, and 14.1s. 102ms, 328ms,83.1ms is the duration each commit took; it is not the total time the selected component took to render.
  • D: Zoomed in view on the component we selected and its children.

Here are the notes on the profile based on which we worked on improving the editing experience. You can download the attached profile and import it in your React profiler to follow along or just refer to the image above.

Please note that the React profiler is available only when you open a react app in dev mode in Chrome/Firefox, if you don’t have a local React development set up, you can use the standalone React developer tools to read the profile. 

Here are instructions on how to install it and start it: 

Install

# Yarn

yarn global add react-devtools

# NPM

npm install -g react-devtools

Run

react-devtools

Follow this link to read the detailed notes from the profile we did to improve the editing experience on Appsmith. 

I’ve put some notes here for your reference: 

1. Evaluated value opening. Not related to editing.

2. Widgets editor, not sure why.

3. Editor focused. We should be able to avoid the rest of the property pane from rendering.

4. Small changes to property pane, its header, lightning menu, and action creator. Nothing changes for them, so they should not be re-rendering. Memoization can help here.

5. Same as above. 

6. We get the evaluated value back. Entire widgets editor is re-rendered (Deduced this from one of the two updates to table), we can optimise this

- If each widget subscribes to its data independently, we should be able to avoid the unnecessary renders of the widgets by

- Doing a deep check at the widget level

- update the store with only values that changed. 

7. PropertyPane is rendered with the updated value. EvaluatedValue taking most of the time.

8. From 8 to 17, these are commits like 4 & 5 above. 

9. 18 & 19 are widgets editor and property pane. I don’t see why these are required. I will look into it. 



Widgets Render When Not Needed


One of the most loved features of Appsmith is reactive updates. With reactive updates, you can see the widget change and show data. With traditional programming, you would have to reload the page in order to see the update in the widget. This is achieved by updating the data tree as and when you change something on the canvas and using the updated data tree to re-render the app. Due to the amount of data we have and the number of calculations we need to do, it took a long time and blocked the main thread.

To solve this problem, we moved the evaluations to a web worker freeing the main thread. A brilliant move to solve the problem at hand, but this created a new issue. The problem here was due to object reference changing. Since the data tree is coming from the worker, we would always get a new reference for every item in the tree even though only some of them changed. This reference change was making all the widgets re-render unnecessarily.


A few approaches we tried to solve this problem were:

  1. Get what keys changed from the worker (worker has this information) and update only those values in the reducer. This did not work because the list of keys was not complete. 
  2. Compute the diffs between the current data tree and the one received from the worker and update only what changed. Though this prevented the renders, we did not improve the overall scripting time we measured earlier. The reason is, computing the diffs itself took a lot of time, which would happen twice for each change.


Web Worker to the Rescue 


We moved the task of computing the diffs to the worker and used the deep-diff library to compute the diffs and let immer take care of immutability.

This helped us in two ways:

  1. Offloaded the expensive task of computing the diffs on the main thread.
  2. Reduced the size of the data we transfer between worker and the main thread (this was never a bottleneck for us, though).


This change alone brought down the keypress latency by half.


Instead of replacing the entire data tree from the worker, we get the only changes (updates) and apply them to the current state. applyChanges is a utility method from deep-diff. Immer takes care of the immutability.


If there’s anything to be said about performance improvement, it’s this, don’t take performance for granted and profile your code on a regular basis. Even a few lines of change or configuration can lead to a great performance gain. 



I hope you found this blog helpful. If you’d like to get in touch with Satish, ping him on Discord or visit his website.

Square
Try Appsmith
Inline editing in the table widget, integration with Airtable, and more
2
August
2022
Announcement

Inline editing in the table widget, integration with Airtable, and more

Inline editing in the table widget, integration with Airtable, and more
Vihar Kurama
0
 minutes ↗
#
announcement
Announcement

In July, we squashed 102 of the peskiest bugs and shipped 34 top requested features over and above under-the-hood performance and usability improvements. There’s a new table widget that’s so much more powerful, an Airtable integration, and cleaner Google Sheets queries with 178 commits in 22 days just for that enhancement alone! You can tell we have got our ears close to you. Keep it coming, guys. We love it all, and we are always listening.

#BigThings

The swanky new table widget

Fact: Just 25% of you tell us who you are and how you use Appsmith. We are okay with that. We respect your privacy.
Assertion: Our usage numbers should be 4X more.
Inference: When we say the Table widget, ever since we launched it, has been used a crazy 820,000 times by 6,840 users, we actually mean it's been used a lot more and is second only to the Button.
Takeaway: Give it more love.

Introducing the new Table widget

Everything you asked for from the table and more is packed into this massive update. Here’s three that should make you sit up.

  • With inline editing, you can now forget about writing queries to edit data by cell, row, or column. You just get your data into the table and edit on the screen. We heavylift the queries, updating the database, and making sure it sticks–all behind the scenes. Clicksaver? Lifesaver? Timesaver? All three and more? We think so, too.
  • You know how you have always wanted to refer to custom column names more naturally than typing customColumn1, customColumn2, and so on in your queries? Yep. Done. No matter what the name of your column, reference away just as naturally as you name them.
  • Themes have been making apps pretty for a while, but Tables stayed rebelliously aloof from that prettiness. We have now made them fall in line with Themes, so if you want shades of blue and Roboto, you got it in Tables, too.

There’s a whole lot more that you are going to have to see for yourself.

Airtable integration, out in the sun

Our Airtable integration gave UI facelifts to the low-code datasource. It is now out of beta, ready for its moment in the sun.

Connect with a Airtable base in two minutes, and start building your apps without worrying about complex data workflows.

 

Auto-indent here to make a dent

On our latest version? Tried the JavaScript editor yet? No? Do that now and you don’t have to read on anymore. 

Oh, okay. You are still here. Fine. We will show you.

Automatically pretty code is pretty cool, huh? More about it here.

#UpdateThings

“Hide Error Messages, Hide”

Infuriating little things, error messages, that bring up existential questions, right? And when they showed up all the time, they got us to, “Frustrating!”. They don’t anymore, only showing up when a widget is visible and clicked.

“How much to upgrade?”

Got your Appsmithing going, but a paid feature’s in your way? Fret not, self-hoster. We got your back with a command-line feature that estimates your usage in thirty seconds. Click this and all shall be revealed.

Run any Appsmith branch locally

With something like ./scripts/local_testing.sh chore/local-testing, running any branch as a FAT container is a breeze. Make sure Docker’s installed and running, port 80 is open, and you add arguments if you don’t want to run the release branch.

Errors, alerts, and logs

Two new modules, logger.js and mailer.js now store backup errors and alert you to them—helpful to get you on top of the error and aid find-and-fix.

While logger.js is on by default, mailer.js needs appsmithctl backup --error-mail to get humming.

Just two of the many, many ways we got your back(up).

Moving Google Sheets to UQI 

Google Sheets is a popular data source. We didn’t dig up numbers, but you can take out word for it. UQI stands for Unified Query Interface and affords standardization for queries. Made sense to get queries to Sheets working better and looking neater, too.

#AsAlwaysThings

If wishes were fishes, round-ups would be essays. Wishes aren’t fishes. So, head over to v1.7.9 if you closed our Release Notes in-app pop-up one of four different ways—yeah, we are fixing it—and see What Happened In July Appsmith style.

Need a new datasource connected?   ||    Discord    ||    YouTube    ||    Twitter

Track and manage bugs effectively using Appsmith and Airtable
1
August
2022
Tutorial

Track and manage bugs effectively using Appsmith and Airtable

Track and manage bugs effectively using Appsmith and Airtable
Vidushi Gupta
0
 minutes ↗
#
tutorial
#
dashboard
#
announcement
Tutorial

Airtable is a popular choice for developers who want to manage tabular data easily. While it's easy to use Airtable as a backend, it can be challenging to build a custom UI from scratch. This is where Appsmith comes in. With Appsmith's native Airtable integration, you can create dashboards, CRUD apps, and internal tools in minutes.

In this tutorial, we'll use an Airtable base to build an issue tracker. We'll start by creating a database in Airtable and then importing our data into Appsmith and building on top of it using JavaScript. 

With this application, users can:

  • Connect to their Airtable base.
  • Add a new bug/issue
  • Update the existing issue
  • View the current bugs in the management tool.

Let's jump in!

Step 1:  Getting started

Create a new Appsmith App 

First, we need to create a new application in Appsmith so we can build it out.

  • Visit https://www.appsmith.com to create a new account or login in to an existing one.
  • Create a new application in your preferred organization and edit it.

Connect to Airtable

Now, we need to add your Airtable datasource to the app. In this case, we will clone an existing Airtable sample to provide our data. 

  • Create a new datasource by clicking ‘+’ on the Datasources tab from the entity explorer and then select Airtable.

  • Rename the datasource. Select API Key as the Authentication Type and enter your API Key in the input field. Hit Save.

  • Choose a workspace and a base in the dialog box and hit 'Create Table.'
  • Go to https://airtable.com/api and select the base titled 'All bugs and issues'
  • In the 'Introduction' section of the documentation, copy the Base ID (highlighted in green in the picture below)

  • Select the "Bugs and issues Table" on the left pane. Copy the table name highlighted in green in the image below.

Step 2 : Set up UI for the App

Wireframe

Here is the wireframe for what we are trying to create.

Including the modal that is used to add new bugs.

Create your widgets

Using the wireframe as a guide, create the UI for the application using the drag and drop editor. Here is a suggested process.

  • Choose a preferred theme from the Theme properties option in the property pane on the right.
  • Add a container widget with a text widget for your app's header.
  • Three (or as many as you like) stats boxes on the canvas to display essential statistics at a glance.
  • A container with a text, icon button, and list widget for showing a list of all the issues.
  • A container with text, button, select and list widgets for showing details of the selected issues.
  • A modal with a text, icon button, and JSON form widgets for adding a new bug entry.

Step 3 : Binding data on widgets

Listing records on the List widget

The list of bugs/issues should look something like this. In order to populate the data, create a new query and bind the results to the text.

  • Create a new query from the left pane which uses the Airtable datasource you created in the first step. Rename the query to getBase and choose the Commands to be List records. We chose this command because we would like to list all the bugs and issues in our app. Enter the Base ID and Table Name you copied in the steps above. 
  • Hit Run and you should see a JSON response generated which lists the records. 
  • To bind this response to the list widget, we would first create a JSObject that maps the fields from the records. Create a new JSObject and paste in the following snippet.

getAirTableFields: () => {
  return getBase.data.records.map((record) => {
    let row = record.fields;
    row["id"] = record.id;
    return row;
  });
};


  • In this JSObject, we get the response from the GetBase query, map the fields, and get the id for every row in the table. 
  • Bind the list with this data using  {{JSObject1.getAirTableFields()}}
  • For getting the bug name and the source, bind the text widgets within the list with {{currentItem.Name}} and {{currentItem.Bug_source}} respectively.

Getting details of the selected bug

When we click on an item from the list, we should populate the view container with details of the selected issue


  • In order to get details about the selected bug on the container placed on the right, we would just use the {{List.selectedItem.attribute}} for all the details you wish to display. For example, The bug title can be displayed using {{List1.selectedItem.Name}}, for Associated features write {{List1.selectedItem.Associated_features}}, For priority write {{List1.selectedItem.Priority}}. So on and so forth. 
  • For a closed/open bug field, use the ternary format to display the status. {{List1.selectedItem.Closed == '1'? "Closed": "Open"}}
  • To bind the attachments for the selected bug, write {{List1.selectedItem['Attachments']}} to bind data on the list widget in the right container. 
  • Just like binding the bug details, in the image widget enter {{currentItem.url}} in the property pane to display the image attached
  • Use {{currentItem.filename}} and {{currentItem.type}} to display the file name and type on the text widget.

Displaying statistics on the statsboxes

These statsboxes should help display important information at a glance from this database. As the number of issues grows, this will give us a quick understanding of the status.

  • In order to populate the statsboxes with statistics, we would create a JSObject function that maps to fields and then to Priority within the same JSON response and check if the value is High, meaning the priority is set to high. What we get in the response is our desired statistic. 

highPriority: () => {
  const high = getBase.data.records.map((record) => record.fields.Priority);
  return high.filter((currentItem) => currentItem == "High").length;
};

  • Bind this output in the text widget using {{JSObject1.highPriority()}}
  • In the very same manner, write a function and bind the output for the number of bugs labeled open and critical

Adding a new Bug/Issue

When clicking the button to add an issue, a modal appears with a form that creates a new entry. It looks like this:

  • Set the Modal to open on onClick of the icon button on the top right corner of the container on the left. 

  • Populate the JSON Form with source data by pasting the following.

{
"fields": { 
    "Bug Title": "",
    "Priority": "",
    "Assigned To":"",
    "Status": "",
    "Screenshots": [
      {
        "URL": ""
      }
    ],
    "Bug Description": "",
    "Bug Source": "",
    "Features Associated": "",
    "Created by": ""
}
}


You can customize the field configuration as per your requirement. Here’s what the JSON Form looks like https://www.loom.com/share/1087b1e8932846feaf3dd03e8b3bb780

  • To insert a new record, we’ll write a new query. 
    Create a new query and name it as InsertQuery. Choose the command to be Create Records. Add in your Base ID and Table Name. For the Records, bind the form data from the JSON form for every field. 

[
  {
    "fields": {
      "Name": "{{JSONForm1.formData.fields['Bug Title']}}",
      "Priority": "{{JSONForm1.formData.fields['Priority']}}",
      "Status": "{{JSONForm1.formData.fields['Status']}}",
      "Attachments": [
        {
          "url": "{{JSONForm1.formData.fields.Screenshots[0].URL}}"
        }
      ],
      "Assigned_to": "{{JSONForm1.formData.fields['Assigned To']}}",
      "Description": "{{JSONForm1.formData.fields['Bug Description']}}",
      "Bug_source": "{{JSONForm1.formData.fields['Bug Source']}}",
      "Associated_features": "{{JSONForm1.formData.fields['Features Associated']}}",
      "Created_by": "{{JSONForm1.formData.fields['Created by']}}"
    }
  }
]

  • We’ll make a new JSObject function to run multiple queries when the Add Bug button is clicked in the form

addBug: async () => {
  InsertQuery.run();
  getBase.run();
  closeModal("Modal2");
};
  • Now bind this function on onClick of the Add Bug button in the JSON Form.

Update fields of a bug

This query/button can help update the details of the bug. In this case, we update the priority and statuses. 

To update the priority and status of a selected bug, an Update Records query would be used. 

  • Create a new query and rename it as updateQuery. Choose the command to be Update Records and enter your BaseID and Table Name. In the records field, paste the following to get the selectedOptionValue of the select widgets

[
    {
      "id": {{List2.selectedItem.id}},
      "fields": {  
        "Priority": {{Select1.selectedOptionValue}},
        "Status":{{Select2.selectedOptionValue}}
      }
    }
]

  • Now, bind this query to run on onClick of the update button.

Final thoughts

And that’s it! You have your bug tracker application ready using Appsmith’s native Airtable integration 🎉

First, you created a new Appsmith application and connected it to Airtable. Then you created the UI for your app using the drag and drop tools in Appsmith. Finally, you tied the data from Airtable to the UI widgets. Your final app should look similar to this:

Please use this form to contact us if you have any template requests for internal tools that you need, and we will get to work! 

If you have any questions, contact us on Discord. You can also keep up with us on Twitter and YouTube.

Build Custom UI on top of Airtable data
25
July
2022
Announcement

Build Custom UI on top of Airtable data

Build Custom UI on top of Airtable data
Rishabh Kaul
0
 minutes ↗
#
integrations
#
databases
#
announcement
Announcement

Today, our integration with Airtable comes out of beta and is available for everyone 🎉! You can now build custom UIs and interact with applications built on Airtable, with minimal configuration.

While it is possible to use the default API interface to connect to Airtable, we wanted to make it easier for you to directly connect your Airtable account and create applications faster than ever. This new data connector introduces a number of features:

  • Integration located in the “Datasources” section
  • Connect to your Airtable account with either an API Key or a Bearer Token (OAuth 2.0)
  • Create queries to fetch, create, retrieve, update and delete data from a datasource using the Appsmith query editor. 
  • List command lets you display all the data from Airtable, and can also present data that has been filtered and sorted based on fields, records, time zones, etc. 

For details and information on how to use this new integration (with videos!), check out our Airtable documentation here. See it in action on our full tutorial here, where we build an issue tracker with Airtable as backend. As always, let us know what you think!

What’s a Rich Text element?

asdsadasdsa

asdsadasdsa

The rich text element allows you to create and format headings, paragraphs, blockquotes, images, and video all in one place instead of having to add and format them individually. Just double-click and easily create content.

sfdfsdfds

dsfdsfdsf

adfkaldf

The rich text element allows you to create and format

sadadasdasdas dsada sadas asd ad

Static and dynamic content editing

  1. vdfgdgd
  2. gjgjg

A rich text element can be used with static or dynamic content. For static content, just drop it into any page and begin editing. For dynamic content, add a rich text field to any collection and then connect a rich text element to that field in the settings panel. Voila!

How to customize formatting for each rich text

Headings, paragraphs, blockquotes, figures, images, and figure captions can all be styled after a class is added to the rich text element using the "When inside of" nested selector system.

swzdswxzdsw