9
June
2021
Tutorial

Connecting Mixpanel, Reply.io and Active Campaign using Appsmith to engage with your users

0
 minutes

Like most companies, we use analytics and marketing automation software to run our daily operations and engage with different segments of users. We use Mixpanel, ActiveCampaign and Reply.io for analytics, managing lists and automation, and email engagement.

To determine which users we need to reach out to, we have a report we run on Mixpanel. Sometimes we need to send them a simple email, and sometimes we need to send them an engaging sequence of emails. This decision is again based on the report from Mixpanel. ActiveCampaign helps us with the one-off emails, but we use reply.io for engaging and personalised sequences.

This is what the process looks like:

  • Mixpanel reports generating cohorts
  • Feed relevant cohort data to ActiveCampaign for single one-off emails
  • Feed relevant cohort data along with user specifics to reply.io for engagement

We’re still young, and we look at most users we want to engage with personally, and doing this manually every day would take a lot of time and workforce. So we ended up building a dashboard on which, with a single click of a button, we can customise and send out emails to our users.

This is what our process looks like now:

  • Look at user details in the Appsmith dashboard
  • Personalise engagement based on an app built, usage and organisation
  • Click on the button to engage the user

It saves us a LOT of time and helps us keep our core focus on our users.

In this tutorial, we’ll be walking through different steps to build such workflows with various APIs and extend them based on our use cases using Appsmith.

Appsmith is an open-source framework that lets developers build dashboards, workflows, and CRUD apps with only the necessary code. You can connect to any API or databases like MongoDB, PostgreSQL, or MYSQL and get access to multiple widgets, including charts, tables and forms, for building a UI fast.

Setting up Mixpanel API on Appsmith

Mixpanel is a product analytics tool that’ll give reports based on defined queries. It also provides API, which we’ll consume on Appsmith to pull out all the reports of users who have invited others. Now, let’s follow the below steps to set Mixpanel API as a data source on Appsmith:

  • Create a new account on Appsmith (it’s free!), if you are already an existing user, log in to your Appsmith account.
  • Next, create a new application by clicking on the “Create New” button under the Appsmith dashboard.
  • We’ll now see a new Appsmith app with an empty canvas and a sidebar with Widgets, APIs and DB Queries.
  • Now, click on the + icon next to the APIs section and choose Create new.
  • Now add the following Mix Panel API endpoint URL in the request input.
https://mixpanel.com/api/2.0
  • Click on the SAVE AS DATASOURCE button next to the URL, rename this data source as MixPanel API, and hit Save.
  • Now choose the data source and create a new API; let’s rename it asget_users, add the following route at the end of the URL: /engage?project_id=2032485. This is how our API should look like:
https://mixpanel.com/api/2.0/engage?project_id=2032485
  • Sometimes, Mixpanel APIs might be slow to process; hence we’ll have to increase the API timeout options; we can simply do this by going to the settings tab and increasing the time out to 100000.
  • Lastly, set the request type to POST and hit RUN; we should see the list of users that are inside the Mixpanel report with id 2032485
The API's and ids used in these tutorials are examples created for demo purposes. These do not depict the original data. Feel free to work with your APIs or follow along with these tutorials with the given examples.

Fantastic, we should now see the response from API having a set of users for whom we want to build customised email engagements.

In the next section, let’s show the users on a List widget and customise it based on our UI preferences.

Binding Users onto the List Widget

Let’s use the List widget to show all the invited users from the get_users API endpoint. Follow the below steps:

  • Click+ icon next to the Widgets from the left navigation and drop the List widget on canvas.
  • Now open the list property pane by clicking on the cog icon on the top-right of the list widget. Inside the property pane, we can bind the data and create necessary actions using the pre-defined properties.
  • Now paste the following code snippet into the Items property in the property pane:
{
{
  get_users.data.results.map((r) => ({
    email: r.$properties.$email,
    last_name: r.$properties.$last_name,
    first_name: r.$properties.$first_name,
    lat: r.$properties.clearbit_company_geo_lat,
    city: r.$properties.$city,
    lng: r.$properties.clearbit_company_geo_lng,
    company: r.$properties.clearbit_company_domain,
    country: r.$properties.clearbit_company_geo_country,
  })).filter(r => r.lat);
}
}

Above, we have used the moustache syntax and consumed the get_users API, which was defined previously. In Appsmith, we can use the moustache syntax anywhere, anytime and write JS to manipulations. In this case, we are returning the important variables like email, last name, location of user, company to the list.

Following is a screenshot of how the evaluated value looks like after we add in the JS:

CleanShot 2021-06-09 at 01.58.51.jpeg

Now let’s drag and drop a few text widget’s on the first list item and bind the values from the list Items property.

  • Find the text widget from the Widgets section drag and drop four of these; the first two text widgets will act as the Label’s, and the last two will act as the Values from the API.

For the first two widgets, set the values like Name and Email. Next, set the following text Values to {{currentItem.email}} and {{currentItem.first_name + ' ' + currentItem.last_name}} for the other two widgets. Now add one more text widget and customise it with a background colour such that it looks like a button; this is because whenever we click this, we can use the list’s selected item property and show the details of the selected user from the list.

Below is a screenshot of how our list widget looks now:

CleanShot 2021-06-09 at 02.07.57.jpeg

Now, let’s add a Map widget and bind the latitude and longitude to locate the user visually. Let’s follow the below steps:

  • First, find the map widget’s from the widget’s section and drag and drop a new Map Widget next to our user’s table.
  • Now, open the Map’s property and add the following JS in the Initial location property by toggling the JS button next to it:
{
    "lat": {{users_list?.selectedItem?.lat || 0}},
    "long": {{users_list?.selectedItem?.lng || 0}},
    "title": "{{users_list.selectedItem.city}}"
}

Here, we’re setting the initial tag to the latitude, longitude and title from the list widget based on the selected item using the selectedItem property.

  • We’ll also need to set the Default markers to the following:
[{
"lat": {{users_list?.selectedItem?.lat || 0}},
"long": {{users_list?.selectedItem?.lng || 0}},
"title": "{{users_list.selectedItem.city}}"
}]

This is usually an array that takes details of markers we mark on the map. We need only one marker hence adding only a single object from the selected list item. With this, we should see our map, and when an item is selected, we can see the users' location. Simple right!

Below is a screenshot of the Map widget:

CleanShot 2021-06-09 at 02.22.04.jpeg

Fetch Smartlook Recordings from Mix Panel API

In this section, we’ll add one more workflow where when clicked on a button, we should be redirected to the list-item selected user’s smart look recordings. These smart look recordings are added in a different mix panel API which is protected. Hence we’ll be using an authorization mode to access this API. Follow the below steps to follow:

  • Use the Mixpanel API data source we’ve created before and click Create new.
  • Now, add the following route to the end of the data source: /jql?project_id=2032485, this is how the API should look overall.
https://mixpanel.com/api/2.0/jql?project_id=2032485
  • Now let’s add Authorisation in the headers, copy-paste the below into the key-value pairs:

Authorization : Basic YmZkNDhhYjk1NzcxNTg4NjI0M2VhZDYyNzNhNDhlMTk6

content-type: application/x-www-form-urlencoded

  • Now, navigate to the Body tag and set the type to X-WWW-FORM-URLENCODED and add the following as a key-value pair.
Key: script
Value:
function main() {
  return Events({
    from_date: '2021-01-01',
    to_date: '{{moment().format('YYYY-MM-DD')}}',
    event_selectors: [
      {
        event: 'WIDGET_DROP',
        selector: '"{{users_list.selectedItem.email}}" in properties["$email"]',
        label: 'Invite Graph',
      },
    ],
  });
}

Awesome, this is a custom configuration for our Mixpanel Report to fetch the Smartlook recordings, you can customise this based on your report or use this as an example. Now let’s add a button below the Map widget.

Now, whenever this button is clicked, we should be redirected to the Smartlook URL of that particular users. Hence, we have to use JS to solve this. Now drag and drop a button widget beneath the map widget and set the onClick property to the following:

{{navigateTo(get_recording.data[0].properties.smartlookPlayUrl,'{}','NEW_WINDOW')}}

Here, when the button is clicked, we navigate to a new page, and the target link is the link that’s returned from the get_recording. We’ve done some additional parsing to fetch the smartlookPlayUrl property.

If the API’s are slow, we can always increase the Timeout.

Sending Customised Emails to the Users

In this section, we'll be using the APIs of reply.io to send emails to the users shown on the list.

First, let’s make a simple UI, we’ll have a button labelled, send Email when clicked these email campaign should start.

For this, we'll be needing to create two APIs; follow the steps below:

1. Fetch the Emails from Appsmith API

In this step, we'll have to fetch the profiles from the Appsmith account. Hence, we need to consume one of our Appsmit APIs and pass in the Email that's selected on the list widget.

  • First, let's create a new API called get_user and set the URL as follows:
https://appsmith.api-us1.com/api/3/contacts?email={{users_list.selectedItem.email}}
  • Here, user_list is the name of the list widget, and we're binding the selected email using the moustache API.
  • This API is secure, hence, we'll need to add an API key in header, in our case, it's Api-Token and the value is a60fdd2cb979167412b0a4daa60de8837db13f08538e7221e0d63126a7163c795eb04f7a

2. Send Email

Now, let's create one more API with reply.io to send customised Emails by clicking a button widget.

  • Create a new API and name it as send_email and set the URL as follows:
https://api.reply.io/v1/actions/addandpushtocampaign
  • In the header, we'll need to add the API keys that can found in the reply.io dashboard.
  • Now in the body, we take the inputs from the form widget and then run the API's to send the emails. Below is the JS.
{
    campaignid: 558301,
    lastName : {{users_list.selectedItem.last_name}},
    firstName: {{users_list.selectedItem.first_name}},
    email: {{users_list.selectedItem.email}}
}

Now set the button onClick property to the following JS:

{{
  get_user.run(() =>
    send_email.run(
      () => showAlert("Reached out to user", "success"),
      () => showAlert(send_email.data, "warning")
    ));
}}

Here, we’re fetching the users and sending them the Emails using a reply.io campaign that's already created!

Wrapping Up

Deploy your application on the cloud and share it with others, and that's it. We're done!

You've seen how easy it is to build a customised workflow on Appsmith. Similarly, we can integrate the number of APIs and data sources and build customised dashboards.

If you like this tutorial, drop us a star on our GitHub repository here

Connecting Mixpanel, Reply.io and Active Campaign using Appsmith to engage with your users

Share this

Like most companies, we use analytics and marketing automation software to run our daily operations and engage with different segments of users. We use Mixpanel, ActiveCampaign and Reply.io for analytics, managing lists and automation, and email engagement.

To determine which users we need to reach out to, we have a report we run on Mixpanel. Sometimes we need to send them a simple email, and sometimes we need to send them an engaging sequence of emails. This decision is again based on the report from Mixpanel. ActiveCampaign helps us with the one-off emails, but we use reply.io for engaging and personalised sequences.

This is what the process looks like:

  • Mixpanel reports generating cohorts
  • Feed relevant cohort data to ActiveCampaign for single one-off emails
  • Feed relevant cohort data along with user specifics to reply.io for engagement

We’re still young, and we look at most users we want to engage with personally, and doing this manually every day would take a lot of time and workforce. So we ended up building a dashboard on which, with a single click of a button, we can customise and send out emails to our users.

This is what our process looks like now:

  • Look at user details in the Appsmith dashboard
  • Personalise engagement based on an app built, usage and organisation
  • Click on the button to engage the user

It saves us a LOT of time and helps us keep our core focus on our users.

In this tutorial, we’ll be walking through different steps to build such workflows with various APIs and extend them based on our use cases using Appsmith.

Appsmith is an open-source framework that lets developers build dashboards, workflows, and CRUD apps with only the necessary code. You can connect to any API or databases like MongoDB, PostgreSQL, or MYSQL and get access to multiple widgets, including charts, tables and forms, for building a UI fast.

Setting up Mixpanel API on Appsmith

Mixpanel is a product analytics tool that’ll give reports based on defined queries. It also provides API, which we’ll consume on Appsmith to pull out all the reports of users who have invited others. Now, let’s follow the below steps to set Mixpanel API as a data source on Appsmith:

  • Create a new account on Appsmith (it’s free!), if you are already an existing user, log in to your Appsmith account.
  • Next, create a new application by clicking on the “Create New” button under the Appsmith dashboard.
  • We’ll now see a new Appsmith app with an empty canvas and a sidebar with Widgets, APIs and DB Queries.
  • Now, click on the + icon next to the APIs section and choose Create new.
  • Now add the following Mix Panel API endpoint URL in the request input.
https://mixpanel.com/api/2.0
  • Click on the SAVE AS DATASOURCE button next to the URL, rename this data source as MixPanel API, and hit Save.
  • Now choose the data source and create a new API; let’s rename it asget_users, add the following route at the end of the URL: /engage?project_id=2032485. This is how our API should look like:
https://mixpanel.com/api/2.0/engage?project_id=2032485
  • Sometimes, Mixpanel APIs might be slow to process; hence we’ll have to increase the API timeout options; we can simply do this by going to the settings tab and increasing the time out to 100000.
  • Lastly, set the request type to POST and hit RUN; we should see the list of users that are inside the Mixpanel report with id 2032485
The API's and ids used in these tutorials are examples created for demo purposes. These do not depict the original data. Feel free to work with your APIs or follow along with these tutorials with the given examples.

Fantastic, we should now see the response from API having a set of users for whom we want to build customised email engagements.

In the next section, let’s show the users on a List widget and customise it based on our UI preferences.

Binding Users onto the List Widget

Let’s use the List widget to show all the invited users from the get_users API endpoint. Follow the below steps:

  • Click+ icon next to the Widgets from the left navigation and drop the List widget on canvas.
  • Now open the list property pane by clicking on the cog icon on the top-right of the list widget. Inside the property pane, we can bind the data and create necessary actions using the pre-defined properties.
  • Now paste the following code snippet into the Items property in the property pane:
{
{
  get_users.data.results.map((r) => ({
    email: r.$properties.$email,
    last_name: r.$properties.$last_name,
    first_name: r.$properties.$first_name,
    lat: r.$properties.clearbit_company_geo_lat,
    city: r.$properties.$city,
    lng: r.$properties.clearbit_company_geo_lng,
    company: r.$properties.clearbit_company_domain,
    country: r.$properties.clearbit_company_geo_country,
  })).filter(r => r.lat);
}
}

Above, we have used the moustache syntax and consumed the get_users API, which was defined previously. In Appsmith, we can use the moustache syntax anywhere, anytime and write JS to manipulations. In this case, we are returning the important variables like email, last name, location of user, company to the list.

Following is a screenshot of how the evaluated value looks like after we add in the JS:

CleanShot 2021-06-09 at 01.58.51.jpeg

Now let’s drag and drop a few text widget’s on the first list item and bind the values from the list Items property.

  • Find the text widget from the Widgets section drag and drop four of these; the first two text widgets will act as the Label’s, and the last two will act as the Values from the API.

For the first two widgets, set the values like Name and Email. Next, set the following text Values to {{currentItem.email}} and {{currentItem.first_name + ' ' + currentItem.last_name}} for the other two widgets. Now add one more text widget and customise it with a background colour such that it looks like a button; this is because whenever we click this, we can use the list’s selected item property and show the details of the selected user from the list.

Below is a screenshot of how our list widget looks now:

CleanShot 2021-06-09 at 02.07.57.jpeg

Now, let’s add a Map widget and bind the latitude and longitude to locate the user visually. Let’s follow the below steps:

  • First, find the map widget’s from the widget’s section and drag and drop a new Map Widget next to our user’s table.
  • Now, open the Map’s property and add the following JS in the Initial location property by toggling the JS button next to it:
{
    "lat": {{users_list?.selectedItem?.lat || 0}},
    "long": {{users_list?.selectedItem?.lng || 0}},
    "title": "{{users_list.selectedItem.city}}"
}

Here, we’re setting the initial tag to the latitude, longitude and title from the list widget based on the selected item using the selectedItem property.

  • We’ll also need to set the Default markers to the following:
[{
"lat": {{users_list?.selectedItem?.lat || 0}},
"long": {{users_list?.selectedItem?.lng || 0}},
"title": "{{users_list.selectedItem.city}}"
}]

This is usually an array that takes details of markers we mark on the map. We need only one marker hence adding only a single object from the selected list item. With this, we should see our map, and when an item is selected, we can see the users' location. Simple right!

Below is a screenshot of the Map widget:

CleanShot 2021-06-09 at 02.22.04.jpeg

Fetch Smartlook Recordings from Mix Panel API

In this section, we’ll add one more workflow where when clicked on a button, we should be redirected to the list-item selected user’s smart look recordings. These smart look recordings are added in a different mix panel API which is protected. Hence we’ll be using an authorization mode to access this API. Follow the below steps to follow:

  • Use the Mixpanel API data source we’ve created before and click Create new.
  • Now, add the following route to the end of the data source: /jql?project_id=2032485, this is how the API should look overall.
https://mixpanel.com/api/2.0/jql?project_id=2032485
  • Now let’s add Authorisation in the headers, copy-paste the below into the key-value pairs:

Authorization : Basic YmZkNDhhYjk1NzcxNTg4NjI0M2VhZDYyNzNhNDhlMTk6

content-type: application/x-www-form-urlencoded

  • Now, navigate to the Body tag and set the type to X-WWW-FORM-URLENCODED and add the following as a key-value pair.
Key: script
Value:
function main() {
  return Events({
    from_date: '2021-01-01',
    to_date: '{{moment().format('YYYY-MM-DD')}}',
    event_selectors: [
      {
        event: 'WIDGET_DROP',
        selector: '"{{users_list.selectedItem.email}}" in properties["$email"]',
        label: 'Invite Graph',
      },
    ],
  });
}

Awesome, this is a custom configuration for our Mixpanel Report to fetch the Smartlook recordings, you can customise this based on your report or use this as an example. Now let’s add a button below the Map widget.

Now, whenever this button is clicked, we should be redirected to the Smartlook URL of that particular users. Hence, we have to use JS to solve this. Now drag and drop a button widget beneath the map widget and set the onClick property to the following:

{{navigateTo(get_recording.data[0].properties.smartlookPlayUrl,'{}','NEW_WINDOW')}}

Here, when the button is clicked, we navigate to a new page, and the target link is the link that’s returned from the get_recording. We’ve done some additional parsing to fetch the smartlookPlayUrl property.

If the API’s are slow, we can always increase the Timeout.

Sending Customised Emails to the Users

In this section, we'll be using the APIs of reply.io to send emails to the users shown on the list.

First, let’s make a simple UI, we’ll have a button labelled, send Email when clicked these email campaign should start.

For this, we'll be needing to create two APIs; follow the steps below:

1. Fetch the Emails from Appsmith API

In this step, we'll have to fetch the profiles from the Appsmith account. Hence, we need to consume one of our Appsmit APIs and pass in the Email that's selected on the list widget.

  • First, let's create a new API called get_user and set the URL as follows:
https://appsmith.api-us1.com/api/3/contacts?email={{users_list.selectedItem.email}}
  • Here, user_list is the name of the list widget, and we're binding the selected email using the moustache API.
  • This API is secure, hence, we'll need to add an API key in header, in our case, it's Api-Token and the value is a60fdd2cb979167412b0a4daa60de8837db13f08538e7221e0d63126a7163c795eb04f7a

2. Send Email

Now, let's create one more API with reply.io to send customised Emails by clicking a button widget.

  • Create a new API and name it as send_email and set the URL as follows:
https://api.reply.io/v1/actions/addandpushtocampaign
  • In the header, we'll need to add the API keys that can found in the reply.io dashboard.
  • Now in the body, we take the inputs from the form widget and then run the API's to send the emails. Below is the JS.
{
    campaignid: 558301,
    lastName : {{users_list.selectedItem.last_name}},
    firstName: {{users_list.selectedItem.first_name}},
    email: {{users_list.selectedItem.email}}
}

Now set the button onClick property to the following JS:

{{
  get_user.run(() =>
    send_email.run(
      () => showAlert("Reached out to user", "success"),
      () => showAlert(send_email.data, "warning")
    ));
}}

Here, we’re fetching the users and sending them the Emails using a reply.io campaign that's already created!

Wrapping Up

Deploy your application on the cloud and share it with others, and that's it. We're done!

You've seen how easy it is to build a customised workflow on Appsmith. Similarly, we can integrate the number of APIs and data sources and build customised dashboards.

If you like this tutorial, drop us a star on our GitHub repository here

What’s a Rich Text element?

The rich text element allows you to create and format headings, paragraphs, blockquotes, images, and video all in one place instead of having to add and format them individually. Just double-click and easily create content.

  • xvcmbmvkmnkmbknmbkmlnj
  • A rich text element can be used with static or dynamic content. For static content, just drop it

A rich text element can be used with static or dynamic content. For static content, just drop it into any page and begin editing. For dynamic content, add a rich text field to any collection and then connect a rich text element to that field in the settings panel. Voila!

  1. A rich text element can be used with static or dynamic content. For static content, just drop it into any page and begin editing. For dynamic content, add a rich text field to any collection and then connect a rich text element to that field in the settings panel. Voila!

How to customize formatting for each rich text

Headings, paragraphs, blockquotes, figures, images, and figure captions can all be styled after a class is added to the rich text element using the "When inside of" nested selector system.

ksnopirirfnb [aorewmb[oiewsn b[opebr
  1. then connect a rich text

dfbstjsrykmsry

Square
Try Appsmith
Debugging your apps in Appsmith with the Appsmith Debugger, part 2
27
September
2022
Product

Debugging your apps in Appsmith with the Appsmith Debugger, part 2

Debugging your apps in Appsmith with the Appsmith Debugger, part 2
Ayush Pahwa
0
 minutes ↗
#
product
#
errors
#
troubleshooting
#
debugger
Product
Meet the sidekicks, Logs and Inspect Entity

The first part of this teardown helped you see how the Error pane can save you hours in debugging and build better internal apps. In this one, let’s meet two seemingly innocuous features that can give you debugging super-powers when used right.

Logs

The Logs pane shows you everything logged by Appsmith and, like Errors, in lockstep with the sequence of code execution in your build. Borrowing from the experience of showing logs in general—in the browser console, from a shell, or on your favorite IDE—the Logs pane has four views for specific debugging use cases.

Post_5.jpg (1920×1080)

All Logs

This view shows you all logs timestamped by when we saw them in your Appsmith session. Updated a widget’s property? Wrote a new action to your GraphQL datasource? Ran a JS Object to concat two queries? It all gets logged, including the errors you see in the Errors pane, in a separate view called Error Logs. You will see how that can be useful in a GIF, pun intended.

The All Logs view can be a little overwhelming, though, and a bit of work when you have been at your build for a while. For easier tracking of relevant logs, use one of the three options below.

Post_6.gif (1440×810)

Errors Logs

Everything you learned about the Errors pane applies to this view, too, but there’s more to this view. Here's a likely scenario to show that.

State #1

You have a button to reload a table, presumably to refresh the data from your datasource.

Condition #1

You use the Button property, onClick, which runs the query to fetch the latest data into the table.

Scenario #1

Your query fails.

- On just the Error pane

  • You see just the error for the failing query. Although helpful, it doesn’t offer context for the before and after of the error.

- On the Error Logs pane under Logs

  1. You see logs for the Button click and the executed onClick event .
  2. Because the onClick property is binded to queries and JS Objects, you see the ones that are successfully executed and those that fail.
Error_Logs__Appsmith.gif (1440×810)

The triaging in our example above is especially useful when you have nested queries, several dependent bindings, and a more complex workflow overall.

Console Logs

console.log_in_the_Editor__Appsmith.jpg (1920×1080)

Just introduced in the Debugger, console methods in Appsmith help you see statements for just JS Objects and JavaScript bindings so much better than in the browser sub-window.

Set points in your code that you want to log statements at, view tabular data, or see groups for repeated errors.

System Logs

Post_7.jpg (1920×1080)

Automatically tracking all your interactions with Appsmith during build, System Logs show a helpful trail of activity by descending order of timestamp, especially useful when you want to go back in time or pivot from a point of failure to everything that led to it.

They show up for different situations and interactions for the type of entity you are working with.

With widgets, you see a log when you

  • Drag-and-drop a new widget on the canvas.
  • Update the widget’s properties
    Updating a property also updates all its dependent properties which then show up in System Logs.
Dependent_properties_updates_in_system_logs__Appsmith.gif (1280×720)
For example, when you update the tableData property, you also see its dependent properties like selectedRowIndex, filters, triggeredRowIndex, and so on.
  • Trigger events with an end-user action.
Trigger_events_with_an_end-user_action__Appsmith.gif (1280×720)
For example, when you are using an end-user action to store a value with storeValue or when you want a click-action to trigger an operation like an update or delete and are using onClick, you see them show up in System Logs.
  • Delete a widget from the canvas

With actions, you see them when you

  • Create a new datasource or a query
  • Update query properties like queryName, queryBody, queryConfiguration, and queryProperties.
  • Execute a query
Execute_a_query.gif (1440×810)
This can be either from query pane, running a plain REST API query, a JS Object, or via a widget’s bindings.
  • Delete a query

With JS Objects, you’ll see system logs when you

  • Create and update code inside JS Objects
  • Execute JS Objects
Execute_JS_Objects.gif (1440×810)

Just like errors, system logs are native to entities and have four parts to them.

Parts_of_a_system_log_line__Appsmith.jpg (1920×1080)

The timestamp

Logged as your entities are created, updated and deleted, these little breadcrumbs help you track back from when the error occurred to when it was last A-Okay.

Timestamped_logs_in_System_Logs.gif (1440×810)

The message

Useful during build, the message of the log answers two questions— what were you doing with an entity—creating it, updating it, deleting it—and what happened with your action—success or failure.

  • With widgets, outside of CRUD information, you also see event-specific info like onClick and showAlert linked to those widgets.
  • Queries and JS Objects are straightforward with start and end points that indicate if they were updated, ran, and failed.

The source

Like errors, a system log has two parts to its source—the entity’s name.the type of entity, e.g., SELECT1.TABLE1.WIDGET.

Redirect_from_an_Inspect_Entity_sub-window.gif (1440×810)
👌🏽 Appsmith Experience plug

Clicking the source from the logs takes you to the associated entity anywhere in Appsmith, be it a widget, a query, or a JS Object. Noice!

The response

This doesn’t always show, but when it does, it can be useful confirmation of a binding working, a query running successfully, or a JS Object executing completely.

  • For widgets, you see which properties are updated when you are configuring them and how.
    Say you’re updating the text widget’s background property and you don’t see it change on the canvas. Track the log to the response for a quick confirmation of that and troubleshoot the canvas next.
  • For queries, you’ll see two different logs—the start of a query run and the status of its execution.
    The first type of log will show you configuration details of the query—helpful to verify if the config matches the request.        

{
    "timeoutInMillisecond":10000
    "paginationType":"NONE"
    "encodeParamsToggle":true
    "body":"SELECT * FROM public."users" LIMIT 10;"
    "pluginSpecifiedTemplates":[
        0:{
            "value":true
        }
    ]
}

  • The second type will throw an error if the run fails. When the query runs successfully, it shows all the parameters that the query ran with and the time taken for the response.

{
	"response" : [...],
	"request" : {
		"actionId" "6321c1193668£71e£7caala2"
		"requestedAt" : 1663912830.640344
		"requestParams": {...}
}

  • With JS Objects, you see the response from the function as a JSON after an object is successfully run. This shows you how Appsmith handles the function while evaluating and running it and can be useful for spotting conflicts, undefined references, or troublesome variables.

Inspect Entity

Borrowing from a modern browser’s Inspect Element feature, Inspect Entity lets you see incoming and outgoing entities for any widget. These entities can be queries, JS Objects, or even other widgets.

Group_8480.png (1920×1080)
  • Incoming entities are those that fetch data from the datasource into the widget.
    For example, if the data on a table is populated by a Postgres query, you’ll see the query name under the Incoming entities column.
  • Outgoing entities are those that can specify the data that’s to be sent to the datasource in a typical CUD operation and then send it to your datasource.
    Say, a text widget is binded to a table's selectedRow property, you will see the text widget’s name under the Outgoing entities column.

The Inspect Entity pane lets you see dependencies for all your widgets on the canvas, especially useful if you have a medium-complex app with several widgets working off of each other. For example, when you have a parent widget or query that controls bindings on other dependent widgets---call them children widgets---, Inspect Entity can show you all those children when you click the parent and quickly take you to any one of them directly.

In combination with Errors, Logs and Inspect Entity round out the Debugger for several scenarios during build and save you hours in building an app end-users love. Try out the Debugger and let us know how you like it, what it's missing, and what we can improve. Our Discord is the best place for that feedback.

The Appsmith Debugger now supports Console methods
23
September
2022
Announcement

The Appsmith Debugger now supports Console methods

The Appsmith Debugger now supports Console methods
Rishabh Rathod
0
 minutes ↗
#
debugger
#
troubleshooting
#
console-methods
Announcement

For a while now, you have used and loved the Appsmith Debugger, nearly complete with a Error pane, system and error logs, and an entity inspector. We say nearly complete because it was missing one of the most popular debugging tools in a dev’s toolkit—console methods.

We are happy to announce the availability of console methods for both cloud users and self-hosters on v1.8.0.

“But, what is the Appsmith Debugger?”

Image_1.png (1920×1080)

Think of the Appsmith Debugger as a set of Chrome DevTools—like for Appsmith. It lives on the familiar 🐞 everywhere in Appsmith and

  • shows helpful error messages for bindings, queries, and variables
  • lets you inspect entity relationships
  • filters system and user logs

All of this is helpful when debugging unexpected API responses or app viewer experiences. Should you care to learn more, this post breaks down the debugger by each one of its features.

“Okay, and console methods are…”

Just one of the most popular ways of print debugging in modern browsers, console methods, exposed by the console API, are a set of functions that help you log the values of variables at set points in your code, messages, or even tabular data so you can investigate them in your browser’s debugging console.

Before today, you could use all supported browser console methods, but only in the browser’s dev tools sub-window. To any developer with their hands dirty with front-end code, the browser debugging subwindow is a necessary evil—a thousand lines of errors, messages, values, and steps that you would have to sift through. We are not going to say, “Looking for the literal needle in the haystack”, but you know you are thinking it.

“And the Appsmith Debugger has a console now?”

Yes! 🥳

So, instead of something like,

you now see,

Image_3.png (1920×1080)

Sweet? This gets sweeter.

Supported methods

  • log

Almost synonymous with console, the .log() method is one of the most popular ways to log a message or the values of variables defined in your Javascript.

It can also be used to show helpful messages or comments, say, the entry and exit points of functions.

Example


getUUID: () => {
		console.log("entry - getUUID function");
		let prefix;
		
		let d = new Date().getTime();
		console.log("new date created -", d);
		d += (parseInt(Math.random() * 100)).toString();
		console.log(d, "random number generated by getUUID")
		if (undefined === prefix) {
			prefix = 'uid-';
		}
		d = prefix + d;
		console.log("UUID created -", d);
		console.log("exit - getUUID function")
		return d;
	}

Result

Image_4.png (1920×1080)
  • error

the .error() method logs an error message to the Appsmith console, be it a a string like, “This is an error message” or the value of a function.

Say you've written a function and you suspect it’s returning an error., but you don’t know what kind. For unknown unknowns like this, `error` comes handy.

Example


checkTextWidget: () => {
		const element = Text1.text;
		if (element == "") {
			console.error("There is an error. The Text property is empty ");
		}
		return element;
	}

Result

Image_5.png (1920×1080)
  • warn

Jus as .error() aids error investigations, .warn() shows, well, warnings for known knowns. Some situations this can come in handy are,- When the evaluated value of binded data on a widget is not using the same datatype as the expected value- When widgets continue to use deprecated queries or functions- When the timezone used in a datetime functions doesn't match the browser’s

Example


selectDefaultValue: () => {
	 const defaultValue = Select1.selectedOptionValue;
		if (defaultValue == ""){
			console.warn("No values selected on Select1 widget ")
		}
		return defaultValue;
}

Result

Image_6.png (1920×1080)
  • table

table (.) just does what it says—logs a Table widget’s data in key-value pairs for rows as objects. While we support this in Appsmith, we are still working on a browser console-like table, especially as we make the Table feature-richer.

Example


table1DataFunc: () =>{
		const data = Table1.tableData;
		console.table(data)
}

Result

Image_7.png (1920×1080)

That’s it! You now have the power of the console right within in Appsmith. There are other useful views available under Logs and we'll talk about them in a follow-up to the Debugger teardown soon. Bookmark this page. Thank us later.

Debugging your app in Appsmith with the Appsmith Debugger, Part 1
20
September
2022
Product

Debugging your app in Appsmith with the Appsmith Debugger, Part 1

Debugging your app in Appsmith with the Appsmith Debugger, Part 1
Ayush Pahwa
0
 minutes ↗
#
product
#
errors
#
troubleshooting
#
debugger
Product

That title is a tongue twister, innit? Almost.

Here’s a meme that isn’t. It’s just the painful truth.

Debugging_is_like_being_lost_in_a_deser.jpg (749×500)

There is no perfect code, so you know debugging is inevitable, but it’s still a chore and is as crushing often times as the meme claims it is.

But, while debugging is inevitable, making it painful is optional, especially when you have the Appsmith Debugger. We have claimed we champion developer experience as many times as we could before without being brazen about it. We think. So, we thought some more and said, “Let’s prove the claim, too.”

“Wait, wait. What is the Appsmith Debugger?”

In 2021, we shipped the Appsmith Debugger, a set of Chrome DevelTools-like features that have helped you investigate and resolve errors in Appsmith.

We recorded a video for it in a series about the Debugger, talked about it in our docs, and referenced it enough times to make you groan about our obsession with errors. If this is the first you are hearing of it, get on our Discord so we can tell you some more about it.

Why we did this

Browser dev tools are as helpful as a magnet when looking for iron fillings in a pristine haystack. To the untrained eye, they can be downright criminal, too.

Browser_debugger.jpeg (960×506)
Source: Reddit

Sure, sure, they nest groups of errors and there are separate tabs for the console and the debugger, but meh! There’s a sea of error messages, system logs, console logs, and then there’s you swimming in it.

Before we shipped the debugger, you saw,

  • errors inside a widget's Property pane that floated on your canvas which probably already had several widgets
  • the Editor’s Response pane, which clubbed legit responses with errors

The Debugger solved several of those problems.

Post_8.jpg (1920×1080)

What’s the Debugger have

Available on app.appsmith.com and our self-hosted release images, it can be called by toggling the debug icon—the one that looks like a bug—on the bottom-right corner of your Appsmith screen or with CTRL/CMD +D.

Inside the Debugger, live three panes, Errors, Logs, and Inspect Entity, each with their own uses. In the first part of this two part post, we will break the Error pane down for you and see how it can save you hours over browser dev tools in debugging.

If you would much rather just learn about Logs and Inspect Entity, bookmark this post. We will link to Part 2 in five days. :-)

Errors

Borrowing from a browser’s dev tools sub-window but improving on it radically, the Error pane lists all errors that we see when you are building inside Appsmith. Familiar examples include syntax errors from JavaScript bindings, reference errors from queries, and datatype mismatch errors.

Errors in the pane are specific to an Appsmith entity. Translated from Appsmithlish, it means you see helpful error messages about a faulting widget, a rogue query, or a stubborn JS Object.

Untitled.gif (1440×810)
Example of a faulting widget and the error beaconing it
Untitled.gif (1440×810)
A JS Object error

  • These errors get logged to the pane in lockstep with the sequence of code execution in Appsmith.
  • The Error pane is the default view when working with widgets—most noticeable if you have the Debugger sub-window resized as in the pictures in purple—so you know what’s going wrong and where in real-time.
  • The Editor's Error Pane is smarter. It doesn’t automatically switch to the Error pane—Response is the default on this screen—when an error occurs. Instead, the Debug icon lights up in red with a numeric notification that’s like a running ticker for the number of errors the Debugger sees with your queries or JS Objects. Click it to open the Error pane.
  • Every error you see in the pane follows a template with a few helpful pieces of info to help you debug.
image_high.jpeg (1920×1080)
Numbers on this image correspond to bullets below. Images in sub-bullets below show what the sub-bullet talks about.

The timestamp

Logged as your code executes or a value evaluates with your widgets, these little breadcrumbs help you track back from when the error occurred to when last it was A-Okay.

The issue

Depending on the error type, you will see a couple different kinds of issues.

  1. With widgets, you’ll see the faulting widget property’s name. An example of this is the commonplace The value at tableData is invalid, occurring when the property tableData expects an Array<Object> datatype but you have an Array<List> instead.
  2. With queries, you see more specific errors, often specific to the datasource you are running your queries to, often indicated by status codes returned by your failing requests.
  3. With JS Objects, we straight-up level with you about the parseability of your functions. Parseability probably isn’t a word, but you know what we mean.

The source

This has two parts to it—the entity’s name.the type of entity the troublesome one is, e.g., SELECT1.WIDGET. As is obvious and has been to you, SELECT1 is the entity’s name and WIDGET is the entity type.

👌🏾 Appsmith Experience plug: Clicking the source takes you to the faulting entity anywhere in Appsmith, be it a widget, a query, or a JS Object. Noice!

The message

This is the most helpful part of the message, beginning with Error and ending with a helpful bit of text or a number.

  1. Because widgets bind to queries or JS Objects using JavaScript, quite a few errors you see are the same as familiar JavaScript errors like SyntaxError or TypeError. Some other errors show is not defined. This is when a variable, a query, or a JS Object isn’t defined, but you have specified it in the Property pane.
  2. In the Editor, these messages go a step further and call out the line number in the editor that has the faulting code. For example, Line 2: Unrecognized token '$'. This type of message has three parts to it.
Post_9.jpg (1920×1080)

1. The type: Error

2. The string: relation “public.user” does not exit

3. The line number: Position 15

😻 Appsmith Experience plug: Clicking the message will open our in-app docs finder and run a helpful search to show you top docs matching the error.

Response from queries or bindings

This doesn’t always show, but when it does, it can show you helpful responses with query params or evaluated values of data bindings.

Post_10.jpg (1920×1080)
  1. With widgets, you’ll see the evaluated value from the bindings.
  2. With queries, you’ll see the payload from the API you are querying.

“How does all of this help?”

Consider two situations we have painfully drawn for you.

State #1

You have several queries and widgets on your way to a complete build.

Condition #1

You have nested queries inside JS Objects. Meaning, these queries are binded to multiple widgets via JavaScript transformations and have dependent parameters with each other.

Scenario #1

A query fails and returns an error.

Without the Appsmith Debugger

You decide to sift through the browser dev tools sub-window, trying to locate the faulty query in something that looks like ↓.

The_browser_console.png (1920×1080)

When you find the first problem query, you’re hoping against hope this is your patient zero.

  1. If so, congratulations aren’t quite in order yet. You’re still going to have to surgery the query to see what went wrong where.
  2. With browser tools, may you be lucky and find a fix in the first hour.

Most times, though, Murphy’s Law applies.

  1. Meaning, you will need to find the last problem query.
  2. Repeat steps #1 and #2 with all the sub-steps in between

If you have a friend who’s on Appsmith, you hear them say, “Good morning. Do you have a ready app? No? Try the Debugger. 🙄”

With the Appsmith Debugger

You see all the errors from all the failed queries In the Error pane and nothing else to crowd your investigation.

  1. You quickly scan by the type of errors.
  2. Errors are listed in the sequence of query execution.
Post_11.jpg (1920×1080)
So you can simply scroll to the first failed query, and investigate further.

  1. The error message tells you what failed with the params in which line, neatly indented neatly for you.

Don’t remember the query’s name? Pfft! We got it. Click the error message, and go right to the error source.

Trouble troubleshooting? Click the error message and find super-relevant docs in Appsmith’s doc finder.

At the end of it, you save a whole night’s hair-pulls, wake up bright and fresh, sip your coffee, and wonder why some people still use browser dev tools. 🤔 Maybe you should refer them to us.

State #2

You have the data from a REST API and the table for your dashboard, but you have left the chart for the very end. You are sensible like that. Charts are tricky things in general.

Condition #2

You have to bind the chart widget from Fusion Charts or one of our defaults with a query that should output the format Array<{ x: string, y: number Required }> as input to the widget. This will need JavaScript transformations.

Scenario #2

You get a datatype mismatch error.

Without the Appsmith Debugger

You toggle around the floating EXPECTED STRUCTURE, EXPECTED STRUCTURE - EXAMPLE, and EVALUATED VALUE panes to understand the chart widget’s configuration.

You have a JS Object for the transformation, so you now switch back and forth between the canvas and the JS Editor for each possible fix in the JS code.

  1. By now, you have console.loged your way to the browser tools sub-window. Magnet, meet Iron Fillings In A Haystack.
  2. Forgot the change you made to the JS Object five tries ago? Yeah, well, no System Logs, so what can you do, right? Maybe note each change on Sublime or VS Code from this point on.

With the Appsmith Debugger

Post_12.jpg (1920×1080)

Right after you run the transformation, you see the floating-pane-that-we-don’t have-a-name-for-yet show you some red and the Error pane light up with all your errors, timestamped and sequenced by the order of code execution.

  1. You see the type of error and the evaluated value for the faulting entity. Stick to this without worrying about the unnamed floating pane.
  2. Your query has trouble getting a response from your datasource, so you see that error, but hey, you also see the binding failure of that same query with the widget.
  3. No hunting for the query or the widget you want to troubleshoot. One click from the Debugger and you are transported to the associated entity.
Debugger_with_click-actions__JS_Editor.jpg (1920×1080)

You see all the errors from the transformation in one pane with click-actions for each one of them.

Docs_finder_from_Response__Appsmith.gif (1440×810)

Error messages not enough? Click the error and choose, Browse code snippets, and voila! You now now search for the chart + the query right there and see some of our helpful docs.

Made it to here? Your life inside Appsmith is going to change.

Also, this is just part one of this two-part breakdown. What’s next?

https://media.giphy.com/media/3kIGmlW0lvpnmF3bGy/giphy.gif

Better than post-credits. A whole other movie featuring Logs and Inspect Entity. Meanwhile, here’s a few things you can do.

Until the next Debugger post, Appsmiths.

P.S.: We love you.